

New Millennium Progra

An Overview

Robert Metzger

Integrated Space Microsystems and Power Workshops
National Aeronautics and Space Administration, Jet Propulsion Laboratory, Department of Energy
Pasadena, California
June 2, 1997

0602/9

NASA VISION FOR 21st CENTURY SPACE AND EARTH SCIENCE EXPLORATION

Using advanced new technologies that will provide revolutionary capabilities, spacecraft will

- Be launched more frequently
- Be smaller and lighter, and more cost-effective
- Have highly efficient power systems
- Have integrated avionics systems
- Use new measurement techniques with microsensors and miniaturized devices
- Use "intelligent" flight systems to autonomously navigate and carry out mission operations

-2-

NEW MILLENNIUM PROGRAM EXPLORATION FOR THE 21ST CENTURY

Goals

Revolutionize NASA's space and Earth science programs to achieve exciting and frequent missions in the 21st Century through:

- 1. Developing and validating revolutionary technologies
- 2. Reducing development times and life cycle mission costs
- 3. Enabling highly capable and agile spacecraft
- 4. Promoting nationwide teaming and coordination

PROGRAM PROCESS

ENABLE **VISION** VALIDATE **TECHNOLOGIES** ESTABLISH **VALIDATION FLIGHTS** SPECIFY

Technology Infusion Into 21St Century Science Missions

21ST CENTURY SCIENCE MISSIONS

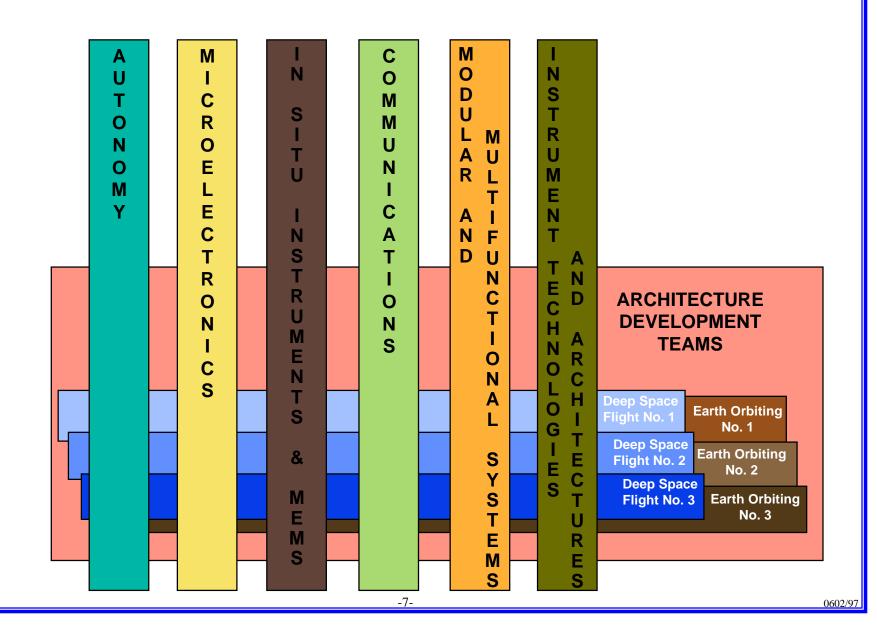
VALIDATION FLIGHT

VALIDATION FLIGHT

TECHNOLOGY PIPELINE

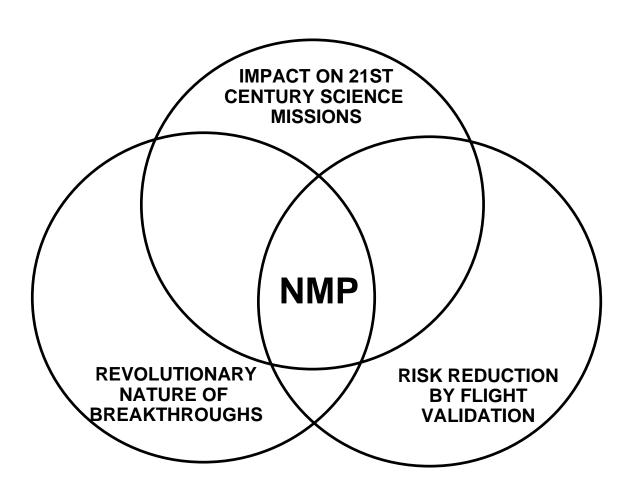
-5-

0602/97


Integrated Product Development Teams (IPDTs)

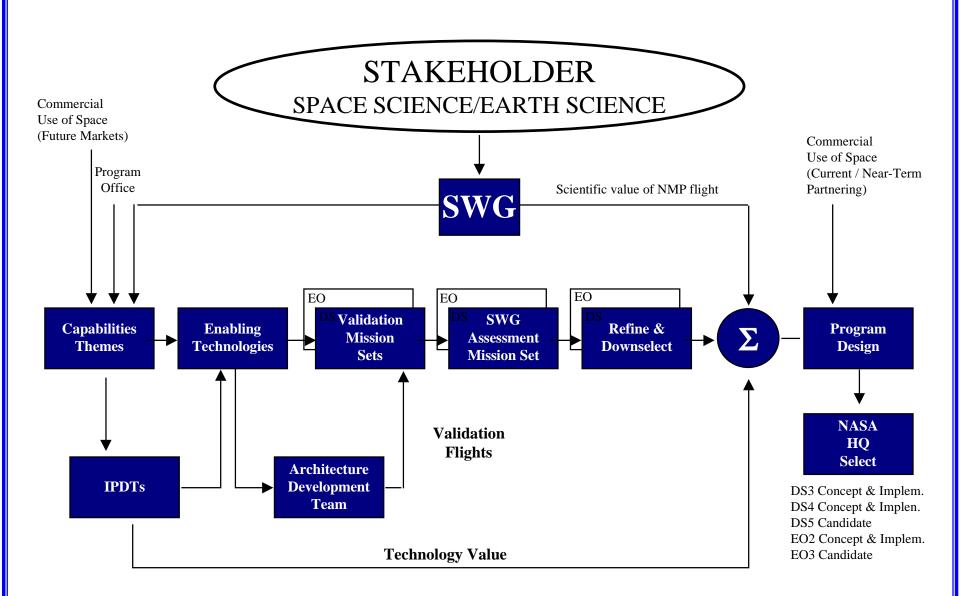
- Develop a vision and roadmap of technologies to enable 21st century science missions
- Form cross-organizational partnerships to leverage nation's technology development programs
- Recommend technologies and validation plans for NMP flights
- Deliver technologies to NMP flights (as members of the Flight Teams)
- Analyze and document validation data and disseminate results to potential users

Integrated Product Development Teams



PROGRAM FOCUS

TECHNOLOGY ASSESSMENT CRITERIA


- Potential breadth of impact on 21st century missions. Is it critical for many missions?
- Revolutionary nature of breakthrough.
 Does it provide orders-of-magnitude improvement?
- Risk reduction offered by flight validation.

 Is flight validation necessary to ensure incorporation of technology into future missions?

NMP Mission Definition Process

-10-

0602/97

TECHNOLOGY and MISSION SELECTION DECISION-MAKING PROCESS

Step 1: Identify spacecraft capability requirements for 21st century

Step 2: Identify advanced technologies that will provide these capabilities

Step 3: Score the technologies

Step 4: Design validation flights that incorporate these advanced technologies

<u>Step 5</u>: Combine validation flights into candidate mission sets

Step 6: NASA Headquarters selects and approves a mission set

1- 0602/9

DEEP-SPACE and EARTHORBITING VALIDATION FLIGHTS

First Mission Set

Deep Space 1 (DS1)

- Advanced Technologies: Will validate a solar electric propulsion system, an autonomous navigation system, and 10 other advanced technologies
- Test Track: Fly by of an asteroid, Mars, and a comet
- Launch Date: July 1998

Deep Space 2 (DS2)

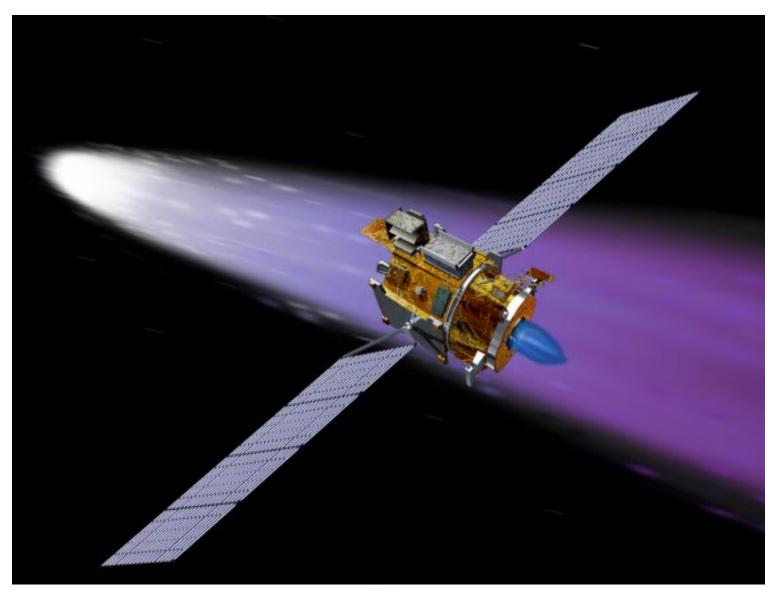
- Advanced Technologies: Will validate miniature network science technologies
- Test Track: Penetrate the surface of Mars
- Launch Date: January 1999

Earth Orbiter 1 (EO1)

- Advanced Technologies: Will validate an Advanced Land Imager, among others
- Test Track: Fly in formation and in same orbit as Landsat 7 satellite
- Launch Date: Mid-1999

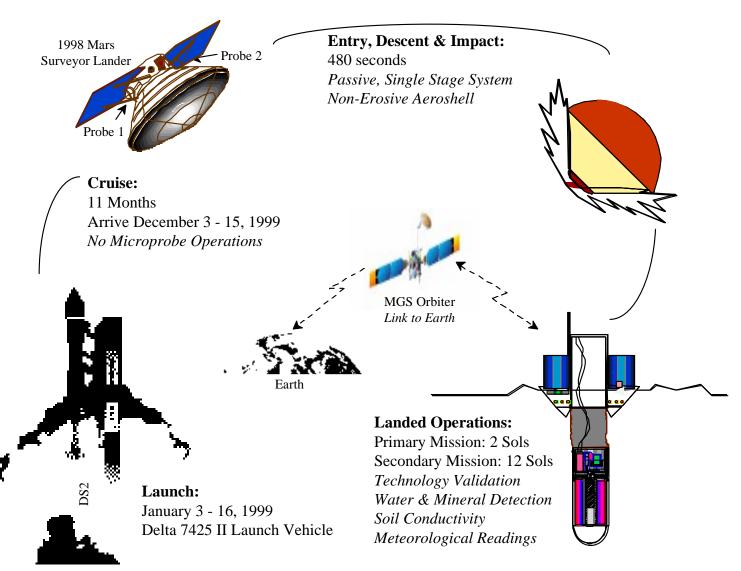
-12-

NMP Flight Schedule


		FY 95			FY 96				FY 97					FY 98				FY 99				FY 2000			
	MILESTONES		1995		1996			1997				1998				1999			2000						
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	DEEP SPACE 1																								
2	PROJECT START			$\overline{igtriangledown}$																					
3	DESIGN									_															
4	FABRICATION / ASSEMBLY												-												
5	INTEGRATION & TEST																								
6	LAUNCH															∇									
7	TECHNOLOGY VALIDATION															`]	
8																									
9	DEEP SPACE 2																								
10	PROJECT START				7	7																			
11	DESIGN										_														
12	FABRICATION / ASSEMBLY									<u> </u>]												
13	INTEGRATION & TEST																								
14	LAUNCH																	\triangleright							
15	TECHNOLOGY VALIDATION																	ľ							
16																									
17	EARTH ORBITING 1																								
18	PROJECT START								∇	7															
19	DESIGN										_														
20	FABRICATION / ASSEMBLY																1								
21	INTEGRATION & TEST																		l						
22	LAUNCH																		∇	7					
23	TECHNOLOGY VALIDATION																								
24																									
25																									

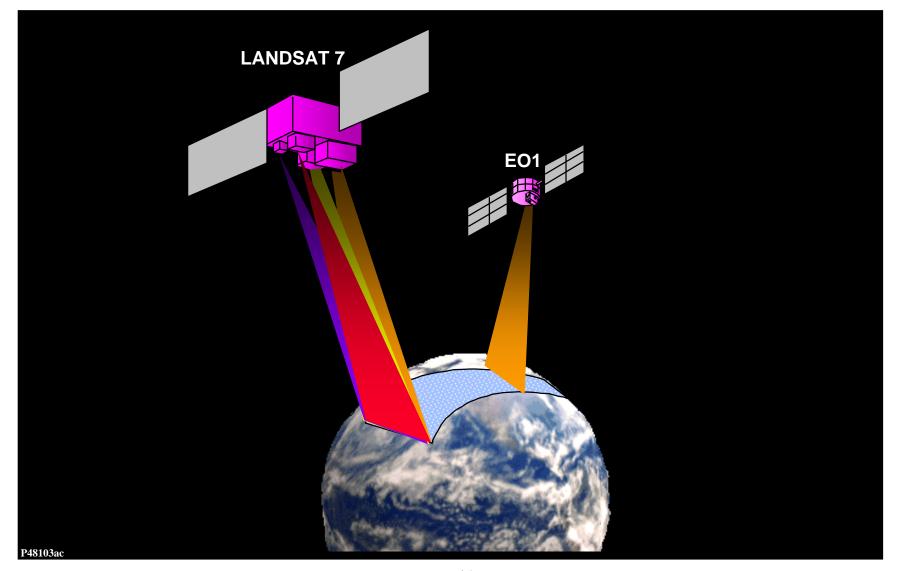
-13-

Deep Space 1



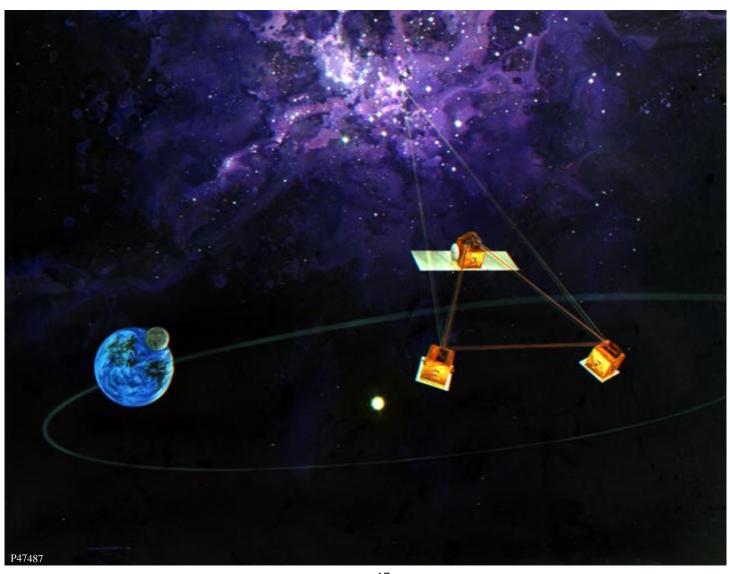
4- 0602/9

Deep Space 2 - Mars Microprobes



P48104bc -15- 0602/97

Earth Orbiter 1 Land Imaging Mission



Deep Space 3 Separated-Spacecraft Optical Interferometer

-17-